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Abstract: - In the theory of option pricing as regards financial mathematics, one-factor model represents a view 
that there exists one Wiener process in the definition of the short rate process indicating one source of 
randomness. In this paper, approximate-analytical solution of a time-fractional one-factor Markovian model for 
bond pricing is considered using a coupled technique referred to as Fractional Complex Transform (FCT) with 
the aid of modified differential transform method. The derivatives are defined in terms of Jumarie’s sense. 
Illustrations are considered with a view to clarifying the effectiveness of the proposed solution method, and the 
solutions are presented graphically based on some financial parameters at different values of the time-fractional 
order. It is noted that the method requires little knowledge of fractional calculus while obtaining the 
approximate-analytical solutions of fractional equations without neglecting or compromising the associated 
accuracy. In terms of extension, the approach can be extended to multi-factor models formulated in terms of 
stochastic dynamics.  
 
Key-Words: - Option pricing; Black Scholes model; RDTM; Fractional derivative; Analytical solutions; 
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1 Introduction 
Interest rate simply denotes a certain amount mainly 
in monetary form charged for the use of financial 
property (such as money in most cases) [1]. Interest 
rates in financial market are non-tradable assets, 
instead, they are derived from the price values of 
tradable underlying assets like swaps as well as 
bonds. An interest rate model (IRM) expresses the 
evolution of the interest rates in connection with 
their dependency at maturity known as Term 
Structure of Interest Rates (TSIR) [2, 3]. Bond 
prices are mainly modeled via the application of 
short rate models [1, 4]. The short rate, ξ  is claimed 
to be governed by the general Stochastic 
Differential Equation (SDE) of the form:  

( ) ( ), ,d t dt t dWξ µ ξ σ ξ= +                 (1) 

where ( ), tµ ξ  is a trend process, ( ) , tσ ξ  
signifies random fluctuation determinant function, 
and ( )W W t=  denotes a Wiener process. If 

( ) ( ), tµ ξ µ ξ=  and ( ) ( ), tσ ξ σ ξ= ; then (1) will 
give Markovian models; meaning that µ  and σ  are 
strictly functions of variable ξ  (not depending on t  
at all). We speak of one-factor models or multi-
factor models if Xξ =  in (1) is a scalar or a vector 
respectively [5]. This work will consider one-factor 

models (denoting the existence of one Wiener 
process-for one source of randomness). 

The choice of the volatility function with respect 
to (w.r.t.) correctness has been a topic of concern. 
Chen, Karolyi, Longstaff, and Sanders proposed a 
general short rate model (SRM) defined in terms of 
single stochastic dynamics of the form: 

( )1 2d dt dWφξ β β ξ σξ= + +                 (2) 

where 1β , 2β , φ  are constants, and ( )W W t=  is a 
Wiener process [6]. The model is referred to as 
CKLS model. In this regard, related references 
include those of [7-16]. Thus, by considering only 
corresponding Markov models, and taking T tτ = −  
(for convenient) to denote the remaining time to 
maturity, then the bond price, ( ),p ξ τ  solves the 
parabolic partial differential model evolving from 
(2) of the form: 

( )

( ) ( )

2
2 2

1 22
1
2

,0

p p p p

p h

φσ ξ β β ξ ξ
τ ξ ξ
ξ ξ

∂ ∂ ∂
= + + −∂ ∂ ∂

 =

       (3) 

for ( ) ( ], ,  0,  0,p p Tξ τ ξ τ= > ∈ . 
Similar PDEs such as (3) can be considered by 

semi-analytical, numerical, and approximate 
methods in terms of solutions [17-20]. In [21], 
Goard considered bond-pricing model w.r.t. group 
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invariant solutions using classical Lie method 
approach. In computing the zero-coupon bonds, 
Sinkala et al. [22] applied symmetry analysis for the 
Vasicek and Cox-Ingersoll-Roll (CIR) models. Pooe 
et al. [23] transformed the one-factor bond pricing 
model to one-dimensional heat equation in order to 
obtain fundamental solutions of zero-coupon bond 
models. Recently, Khalique and Motsepa [24] 
analysed the one-factor term structure model; 
thereafter, they constructed new group invariant 
solutions to the corresponding equation. 
In this paper, the extension of (3) to time-fractional 
order is considered. This takes the form: 

( )

( ) ( ) ( ]

2
2 2

1 22
1 ,
2

,0 ,  0,1 .

p p p p

p h

α
φ

α σ ξ β β ξ ξ
τ ξ ξ
ξ ξ α

∂ ∂ ∂
= + + −∂ ∂ ∂

 = ∈

   (4) 

The fractional derivative in (4) is defined in the 
sense of Jumarie. For related researches on 
fractional models and solution methods, we make 
reference to [25-32]. 

The remaining parts of the paper are structured 
as follows: we have in section 2: a brief note on the 
basic notions Fractional Derivative and its 
properties, section 3 is on the proposed solution 
method (FCT). In section 4, the proposed method is 
applied, thereafter, concluding remark is presented 
in section 5. 
 
 
2 Fractional Derivative in the Sense of 
Jumarie 
 
Reference is made to Jumarie’s Fractional 
Derivative (JFD) as a modified version Riemann-
Liouville derivatives [33-34]. As a result, the 
definition of JFD and its basic properties are 
presented as follows: 
Let ( )zΨ  be considered as a continuous real valued 

function of z , and zD
z

α
α

α

∂ Ψ
Ψ =

∂
 denoting JFD of 

h , of order α w.r.t. z . Then,  

( ) ( ) ( )

( )

( ) ( ) ( )

( )
( ) ( )( )( )

[ )

( ) ( ) ( )( )

1
*

0

**
0

*

1 ,  

for ,0 ,

1 ,
1

for 0,1

,  , 1 ,  1

 0                              

z

z

z

d z d
dz

d z d
dzD

z

α

α

α

φα φ

ζ ζ ζ
α

α

ζ ζ ζ
α

α

α φ φ φ

ζ ζ

− −

−

−

  
− Ψ  

Γ −  
  ∈ −∞ 
   − Ψ  Γ −Ψ =   
  ∈ 
 Ψ ∈ + ≥ 
 
 Ψ = Ψ −Ψ

∫

∫

                                                                              (5) 
where ( )Γ ⋅  represents a gamma function. The main 
features of JFD [34] as follows: 
(i) 0,  0zD cα α= > , for a constant c  

(ii) ( )( ) ( ) ,  0z zD c z cD zα α αΨ = Ψ > , 

(iii) 
( )

( )
1

,  0,
1zD z zα β β αβ

β α
β α

−Γ +
= ≥ >
Γ + −

 

(iv) ( ) ( )( ) ( ) ( )( )
( ) ( )
1 2

1 2
1 2

z
z

z

D z z
D z z

z D z

α
α

α

 Ψ ΨΨ Ψ = 
+Ψ Ψ

, 

(v) ( )( )( ) 1
z z gD z g D D zα αΨ = Ψ ⋅ . 

The features (i)-(v) are fractional derivative of: 
constant function, constant multiple function, power 
function, product function, and function of function 
respectively. Though, (v) can be associated to 
Jumarie’s chain rule in terms of fractional 
derivative. 
 
 
3 The Reduced Differential Transform  
Let ( ),x tω  is an analytic and continuously 
differentiable function, defined on D  a given 
domain, then the differential transformation form of 
( ),x tω  is defined and expressed as: 

( ) ( )
0

,1
!

k

k k
t

x t
x

k t
ω

=

 ∂
Ω =  

∂  
                (6) 

where ( )k xΩ and ( ),x tω  are referred to as the 
transformed and the original functions respectively. 
We make reference to [31, 35-38]. Thus, the 
differential inverse transform (DIT) of ( )k xΩ  is 
defined and denoted as: 

( ) ( )
0

, k
k

k
x t x tω

∞

=

= Ω∑ .                             (7)   
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3.1 The fundamentals properties of the DTM 
These properties are stated below in D1-D5: 

D1: 
( ) ( ) ( )

( ) ( ) ( )
, , ,

k k k

x t q x t p x t

x Q x P x

ω α β

α β

= ±

⇒ Ω = ±

.  

D2: 
( ) ( )

( ) ( ) ( )

,
, ,  

!
.

!k k

h x t
x t

t
k

x H x
k

η

η

η

α
ω η

α η
+

 ∂
= ∈ ∂


+⇒ Ω =



  

D3: 
( ) ( ) ( )

( ) ( ) ( )

,
, ,  

,  .k
k

g x h x t
x t

x
g x H x

x
x

η

η

η

η

ω η

η

 ∂
= ∈ ∂


∂⇒ Ω = ∈ ∂





  

D4: 
( ) ( ) ( )

( ) ( ) ( )
0

, , ,

.
k

k k

x t p x t q x t

x P x Q xη η
η

ω

−
=

 =


⇒ Ω =


∑
 

D5: 
( )

( ) ( )

1 2

1
2

,

0,  0,   
,

1,   0 .

n n

n
c

x t x t

c
x c n c

c

ω

δ δ

 =


≠ 
⇒Ω = − =  =

   

 
3.2 The Fractional Complex Transform [23, 

28] 
Suppose we consider a general fractional differential 
equation of the form: 
 
( ) ( ), , , , 0,  , , ,t x y zh D D D D t x y zα β λ γυ υ υ υ υ υ υ= =

                                          (8) 
and define the Fractional Complex Transform (FCT) 
as follows: 

 
( ) ( ],  0,1 ,
1
atT

α

α
α

= ∈
Γ +

   (9) 

where a is an unknown constant, then from (iii), we 
have: 

( )
( )

1
,  0,

1vD z zα β β αβ
β α

β α
−Γ +

= ≥ >
Γ + −

 

  
( )

( )
( )

1
 

1 1t
aD T t aα α αα
α α α

− Γ +
∴ == = 

Γ + Γ + −  
    (10) 

Hence,  

( )( ) 1 .t t T tD D T t D D T a
T

α α α υυ υ υ ∂
= = ⋅ =

∂
        (11) 

 
 
 
 

4 Applications and Illustrative 
Examples  
In this section, the proposed FCT is applied to a 
time-fractional one-factor Markovian model 
(TF1FMM) for bond pricing as follows [3]: 

( )

( ) ( ]

2
2 2

1 22

1 ,
2

,0 1,  0,1 .

p p p p

p

α
φ

α σ ξ β β ξ ξ
τ ξ ξ
ξ α

∂ ∂ ∂
= + + −∂ ∂ ∂

 = ∈

  (12) 

Solution Steps: 
By FCT, in section 3,  

 
( )1
a p pT

T

α α

α

τ
α τ

∂ ∂
= ⇒ =
Γ + ∂ ∂

    

for 1.a =  Hence, (12) becomes: 

( )

( ) ( ]

2
2 2

1 22

1 ,
2

,0 1, 0,1 .

p p p p
T

p  

φσ ξ β β ξ ξ
ξ ξ

ξ α

 ∂ ∂ ∂
= + + −∂ ∂ ∂

 = ∈

    (13) 

 
By the RDTM in section 3, we have the recurrence 
relation from (4.3) as: 

( ) ( )

2 2
,

1

1 2 ,

1
1 2 , 0.

1
k

k

k k

P
P  k

k P P

φ
ξ

ξ

σ ξ

β β ξ ξ
+

 ′′ = ≥ +  ′+ + − 

    (14) 

As a result, the recursive relation in (14) yields: 

( )

( )

( )

( )

( )

( )

0

2 2
1 ,0 1 2 ,0 0

2 2
2 ,1 1 2 ,1 1

2 2
3 ,2 1 2 ,2 2

2 2
4 ,3 1 2 ,3 3

2 2
, 1

1 2 , 1

,0

1
2

1 1
2 2
1 1
3 2
1 1
4 2

1
1 2 m

m

m

P P

P P P P

P P P P

P P P P

P P P P

P
P

m P

φ
ξ ξ

φ
ξ ξ

φ
ξ ξ

φ
ξ ξ

φ
ξ

ξ

ξ

σ ξ β β ξ ξ

σ ξ β β ξ ξ

σ ξ β β ξ ξ

σ ξ β β ξ ξ

σ ξ

β β ξ

−

−

=

 ′′ ′= + + − 
 
 ′′ ′= + + − 
 
 ′′ ′= + + − 
 
 ′′ ′= + + − 
 

′′
=

′+ +



1

,  .
m

m
Pξ −


















  

  ∈   −  



    (15) 

Therefore, for ( ),0 1P ξ = , we obtained the 
following: 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL S. O. Edeki, I. Adinya

E-ISSN: 2224-2856 204 Volume 14, 2019



 
0

1

2
2 12

1,
,
1 1 1
2 2 2

,P

P
P ξ

ξ β β ξ =  
 


 = = −

 − − +


 

2 2
2 1 2

2
3

3
2 1

1 1 1
6 6 6

1 1 1
,

2 2 6

P
σ ξ ξ β β β

ξ β ξ β ξ

− −

+ +

 
 

=  
  
 

−
 

2 2 2 2 3
2 1 2

2 2
2 22 1 2

1 2 1

3 2 4
2 1

4

1 1 1 1
6 6 24 24

7 51 1
24 24 12 8
1 1 1
4 4

,

24

P

σ ξ σ ξ β σ β ξ β

ξ β ξ β ββ β β

ξ β ξ β ξ

− + 
 
 
 =  
 
 
 
 

+ −

− + + +

− − +

 

5
4 2 3 2

1 2

2 2
2 2 2

1 1 2

2 4 3
2 21 2 2 1 2

2

3 2
2 3 2 22

2 1 2 1

4 3
2 1

5

1 1
12 120 3

111 1
8 30 120
5 1

24 4 120 120
51 1 1

8 12 24 8
1 1

1

3

,

2

1
0

2 1

P

ξσ ξ σ ξ ξ β β

σ ξ βσ ξ β σ β β

ξ β β ξ β β βσ ξ β

ξ βξ β β β ξ β

ξ β ξ β

 
 
 
 
 
 
 

=  
 
 


− + − −

− + +

+ − − −

+ + − 
 
 
 


−

+


+

 

 
2 4 2 26

1 2 2 1

2 3 2 2 3
2 1 2 1 2

3 2 2 2
2 2 2 31 2 2

1 2 2

2 4
3 5 41 2 1

1 2 1

2 2 5 4
2 2 1 2 2

6

1 2
1

119 17 5
720 720 360 48

13 11 7
360 720 90

11 731 1
72 4 6 360

7 1 1 1
48 48 180 48 48

51
48 144 720 720

P

σ ξ β β σ ξ β σ ξ βξ

σ ξ β σ β β ξ β β

ξ β β σ ξ βξ β β σ ξ β

ξ β β σ ββ ξ β ξ β

β β ξ β β βσ β

− + − +

+ + +

+ − + −
=

− − − − −

− + − −
2 4

2

4 2 4 2
3 3 2 2 2 42

2 1

,

31
720

131 1 17 1
8 144 16 360 36

ξ β

ξ β σ ξξ β ξ β σ ξ

 
 
 
 
 
 
 
 
 
 
 
 
 

+ 
 
 
− + + + − 
 

 
 

 

2 2 2 27
1 2 1 2

2 4 4 3 2
2 1 2 1 2

2 2 2 3 2 2
1 2 1 2 1 2

4 4 2 3
1 2 1 2 1

2 3 2
2 2 4 2 2

1 2

4 4 2
1 2

7

137 43
5040 720 360
5 17 11

72 720 72
5 49 7

48 360 72
7 17 7

144 2520 144
81 1

28 28 45
7 11 17

240 120
P

σ ξ β β σ ξ β βξ

σ ξ β ξ β β ξ β β

ξ β β ξ β β ξ β β

ξ β β σ β β σ ξ β

σ ξ βσ ξ β σ ξ β

σ ξ β σ ξ β σ

− + −

− + +

+ − −

− − −

+ − +

= + + −
2 2

1 2

2 4 2 3 2 2 3
2 1 2 2

6 5 2 3
32 1 1 2

1 2

6 5
5 2 3 2 2 1 2

2 1

2 5 3 4 4 3
32 2 2

1

2 5 6 4 3

720
19 13 7

1680 2520 60
1

240 240 90 48
1 1
36 48 5040 5040

43 5 1
80 720 72 48

17 11
144 2520 360

β β

σ ξ β σ β β σ ξ β

ξ β ξ β β β β β

ξ β β βξ β ξ β

ξ β ξ β ξ β ξ β

σ ξ σ ξ σ ξ



















+ + −

+ + + −

− − − −

+ − + +

+ + −


,



















 
 
 
 
 
 
 
 
 
 
 
 
 
 
  


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4 2 3 2 3
1 2 1 2 1 2

2 2 2 2 2 4 2 4
1 2 1 2 1 1

2 5 4 3 6
2 2 22 2 2

1

4 3 4 2 2 3 3
2 2 1 2

2 2 2
31

8

2
1 2

43 83 163
840 1344 1440

179 11
960 160 384 64

3 311
336 40 32 2520

2 79 157
105 840 1440

55 11
576 32

P

σ ξ β β σ ξ β β σ ξ β β

σ ξ β β σ ξ β β β σ ξ β

σ ξ β σ ξ β σ ξ β
σ ξ β

σ ξ β σ ξ β ξ β β

ξ β β
ξ β β

− −

+ + + +

+ − − +

− + +

+ + +

=

5
1 2

5 2 3
4 21 2 1 2

1

2 4 2 2 2 4 3 2
2 2 1 2

2 2 2
2 3 3 2 5 1 2

2 2

4 2 4 2 2 4
1 2 1 2 1 2

2 4 7 6 7
1 2 2 1 2

7
1440

41 137 1
6720 2880 30

11 89 13
120 1680 288

432 1
15 48 2880

35 19
224 576 320
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13440 1440 1440

ξ β β

ξ β β ξ β β
σ ξ β

σ ξ β σ ξ β ξ β β

σ β β
σ ξ β σ ξ β

σ β β ξ β β ξ β β

σ β β ξ β ξ β ξ β

+ − −

− − −

+ + −

− − −

+ − − −

6 4 2 6 2 4 2
1 2 1 2 1

2 3 3 2 2 6 2 4
1 1 2 2 1 2

3 5 4 4 5 3 2 3
2 2 2 1

6 8 2 6 6 2 4 4
1

40320
7 19

40320 1920 2880 192
7 127 17

192 576 40320 5760
23 27 5

960 640 192 96
17 31
20160 40320 720 2520 80

β β σ β ξ β ξ β

σ β β β ξ β β β

ξ β ξ β ξ β ξ β

σ β ξ σ ξ σ ξ σ ξ




















− + + +

+ − + +

− + − −

+ + − − +


,

         




















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




 
Hence, 

 ( )
0

, .j
j

j
p T P Tξ

∞

=

=∑                (16) 

Therefore, (16) is the approximate-analytical 
solution of (13).  In return, we have: 

( ) ( )0
, .

1

j

j
j

p P
ατξ τ
α

∞

=

 
=   Γ + 
∑               (17) 

Equation (17) is an approximate-analytical solution 
of (12) corresponding to the time-fractional one-
factor Markovian model for bond pricing.  We 
consider the financial data according to [1] w.r.t 
CIR model with 0.0894σ = , 1 0.00315β = , and 

2 0.0555β = − . The plots of the resulting solutions 
for 1α = , 0.5α = , and 0.75α =  are displayed in 
Fig.1, Fig. 2, and Fig. 3 respectively. 
 

 
Fig 1: Solution graph for 1α =  

 

 
Fig 2: Solution graph for 0.25α =  

 

 
Fig 3: Solution graph for 0.75α =   
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5.0 Concluding Remarks 
In this paper, a solution method where the 
Fractional Complex Transform is coupled with 
reduced differential transform method is proposed 
and applied for an approximate-analytical solution 
of a time-fractional one-factor Markovian model 
(TF1FMM) for bond pricing. The associated 
derivatives are defined in the sense of Jumarie. 
Preference is given to the CIR model version of 
TF1FMM with the market parameters according to 
Stehlikova  [1] in order to clarify the effectiveness 
of the proposed solution method. Moreso, the 
solutions at different values of time-fractional order 
are graphically displayed. This proposed method 
does not necessarily require a complete knowledge 
of fractional calculus while computing the solutions 
of fractional models yet the level of accuracy is not 
being compromised. It is remarked that the solution 
obtained, and the proposed method can effectively 
serve as a benchmark to further researches in related 
areas via other semi-analytical methods. 
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